

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL

Programa de asignatura por competencias de educación superior

Sección I. Identificación del Curso

Tabla 1. Identificación de la Planificación del Curso.

Actualización:	Abril 08, 2022	Abril 08, 2022						
Carrera:	Ingeniería Industrial			Asignatura:	Electrónica industrial			
Academia:	Industrial en Control de	Procesos / Industrial		Clave:	19SINCEI01			
Módulo formativo:	Área especializante			Seriación:	19SINCEI02 - Instrumentación industrial			
Tipo de curso:	Presencial			Prerrequisito:	19SIN10 - Circuitos elé	ctricos		
Semestre:	Quinto	Créditos: 5.63 Horas semestre: 90 horas						
Teoría:	3 horas	Práctica:	2 horas	Trabajo indpt.:	0 horas	Total x semana:	5 horas	

Sección II. Objetivos educacionales

Tabla 2. Objetivos educacionales

Objetivos educacionales		Criterios de desempeño	Indicadores
OE1	Propondrá soluciones a problemáticas	Los egresados validarán sistemas de mejora mediante la	50 % de egresados aplicarán metodologías para la solución de
	existentes con una metodología sistémica y	aplicación de una metodología previamente trazada o establecida.	problemas.
	de sustentabilidad para elevar los niveles de		
	efectividad de las empresas públicas y		
	privadas.		
OE2	Aplicará métodos, técnicas y modelos de	Los egresados mostrarán resultados de la implementación en los	50 % de egresados aplicarán los modelos y técnicas en las áreas
	calidad en las diferentes áreas de una	modelos y técnicas aplicados en un sistema de calidad acorde a	de la organización.
	organización, alineados con sus objetivos	los objetivos trazados de la organización.	
	para la mejora continua de los procesos.		
OE3	Diseñará proyectos multidisciplinarios	Los egresados evidenciarán los resultados obtenidos en la	50 % de egresados gestionarán proyectos multidisciplinarios.
	integrando recursos organizacionales para	gestión de un proyecto de mejora o del desarrollo del mismo,	
	optimizar los mismos.	contemplando en todo momento la sustentabilidad e impacto	
		social.	
OE4	Diseñará procesos para la optimización de los	Los egresados evidenciarán los resultados obtenidos del análisis	50 % de egresados gestionarán la eficiencia de los recursos en la
	recursos utilizando herramientas	de los procesos para una toma de decisiones asertiva.	organización.
	metodológicas actualizadas para una		
	adecuada toma de decisiones.		
Atrib	utos de egreso de plan de estudios	Criterios de desempeño	Componentes
AE1	Aplicar los conocimientos de ciencias básicas,	- Conocerá los elementos electromecánicos y electrónicos para	1.1 Antecedentes y conceptos.
	como la química, física y matemáticas, y las	identificar su incorporación a equipos industriales.	1.1.1 Funcionamiento y simbología de relevadores y
	ciencias económico administrativas para		electromecánicos.
	eficientar los procesos.	- Realizará experimentos en laboratorios y mediante la simulación	1.1.2 Funcionamiento y simbología de contactores eléctricos.
		por computadora de estos elementos para identificar su	1.1.3 Características técnicas de relevadores y contactores
		incorporación a equipos industriales.	comerciales.

		Continuación: Tabla 2. Objetivos educacionales (continuación	
No.	Atributos de egreso de plan de estudios	Criterios de desempeño	Componentes
			1.1.4 Criterios de diseño con circuitos basados en relevadores y
			contactores.
			1.2 Interfaces electromecánicas de potencia.
			1.2.1 Control electromecánico de potencia en C.C. con
			relevadores.
			1.2.2 Control electromecánico de potencia en C.A. con
			relevadores.
			1.3 Elementos de protección para cargas a C.C. y C.A.
			1.3.1 Breakers de sobrecarga.
			1.3.2 Arrancadores termomagnéticos.
			2.1 Introducción a los semiconductores.
			2.2 Principio de funcionamiento del diodo.
			2.3.1 Tipos de diodos.
			2.3.1.1 Diodo de silicio.
			2.3.1.2 Diodo schottky.
			2.3.1.3 Diodo Led.
			2.3.1.4 Fotodiodo.
			2.3.1.5 Diodo zener.
			2.4 Principio de funcionamiento del del transistor BJT.
			2.4.1 Logica TTL.
			2.5 Principio de funcionamiento del del transistor FET.
			2.5.1 Lógica CMOS.
			2.6 Principio de funcionamiento de los tiristores.
			2.6.1 SCR
			2.6.2 TRIAC
			2.6.3 DIAC
			2.6.4 IGBT

		Continuación: Tabla 2. Objetivos educacionales (continuación	
No.	Atributos de egreso de plan de estudios	Criterios de desempeño	Componentes
AE2	Analizar y aplicar sistemas que conforman a	- Aplicará y diseñará sistemas de control de potencia con	2.7 Control electrónico de potencia con SCR a cargas de C.C. y
	una organización para su optimización e	semiconductores, dispositivos optoelectrónicos y conversores de	C.A.
	innovación teniendo en cuenta el impacto	energía para su incorporación en equipos industriales.	2.8 Control electrónico de potencia en TRIAC a cargas de C.C. y
	económico y social que provoca en el ámbito		C.A.
	regional, nacional e internacional.		
			3.1 Antecedentes y conceptos de los optoacopladores.
			3.1.1 Características técnicas de los optoacopladores de
			aislamiento.
			3.2. Circuitos prácticos con optoacopladores.
			3.3 Control de potencia con elementos optoelectrónicos.
			3.4. Convertidores (conversores) de energía.
			3.4.1 Convertidor CA-CD.
			3.4.2 Convertidor CD-CD.
			3.4.2.1 Convertidor BUCK.
			3.4.2.2 Convertidor BOOST.
			3.4.3 Convertidor CD-CA.
			3.4.3.1 Inversor PWM y SPWM.
			3.5 Electrónica de potencia aplicado a control a máquinas
			eléctricas rotativas.

Sección III. Atributos de la asignatura

Tabla 3. Atributos de la asignatura

Problema a resolver

- Identificar los elementos y parámetros tecnológicos de los componentes, circuitos y sistemas de control para la electrónica industrial, con el propósito de aplicar la normatividad y criterios de seguridad, demostrando las competencias adquiridas para detectar necesidades y proponer el empleo de herramientas necesarias para el mantenimiento u operación de equipos industriales.

Atributos (competencia específica) de la asignatura

Realizar un análisis físico-matemático de los componentes, circuitos y sistemas en electrónica industrial para detectar y proponer estrategias de resolución de problemas orientada la operación de equipos industriales.

Aportación a la con	Aportación a las competencias transversales	
Saber	Saber hacer	Saber Ser
- Conocer las propiedades físicas y eléctricas de los	- Aplicar los conocimientos de electrónica industrial para	- Trabajo colaborativo.
componentes de la electrónica de potencia para su	determinar las necesidades técnicas de los equipos industriales.	- Comunicación efectiva.
implementación e integración en sistemas de control industrial.	- Determinar las características físicas de los sistemas de	- Autonomía en el aprendizaje.
- Identificar los componentes de la electrónica industrial para	control con dispositivos electrónicos de potencia para su	
analizar sus parámetros eléctricos y curvas de respuesta.	correcta implementación en el ámbito industrial.	
- Conocer el comportamiento de los circuitos y sistemas de		
control industrial que utilizan dispositivos electrónicos de		
potencia para su integración en sistemas de control industrial.		
- Describir las características físicas de los componentes de la		
electrónica industrial para el análisis de parámetros.		

Producto integrador de la asignatura, considerando los avances por unidad

Portafolio de evidencias de tareas y actividades de aprendizaje.

Prácticas de laboratorio y simulación por computadora.

Proyecto integrador: Presentación de un circuito de control de aplicación industrial.

Sección IV. Desglose específico por cada unidad formativa

Tabla 4.1. Desglose específico de la unidad "Control electromecánico en sistemas industriales."

Número y nombre de la u	ınidad:	1. Control electromecánico en	sistemas industr	iales.				
Tiempo y porcentaje para esta u	ınidad:	Teoría: 15 h	oras	Práctica:	15 horas	Porcentaj	e del programa:	33.33%
		Conocer y experimentar sistem	as de control de	potencia con elemento	os electromecánicos para	su integración e	en equipos, maquina	aria y sistemas
Aprendizajes espe	erados:	industriales.						
Temas y subtemas (secuencia)		Criterios de desempeño	Estrate	egias didácticas	Estrategias de ev	/aluación	Producto Integr	ador de la unidad
Tomas y carromas (cocacinota)							(Evidencia de apre	ndizaje de la unidad)
1.1 Antecedentes y conceptos.	Saber:		Estrategias Pre-in	nstruccionales.	Evaluación diagnóstica.		Portafolio de evidenc	ias de tareas y
1.1.1 Funcionamiento y simbología de	- Identifi	car los elementos	- Rescatar conoc	imientos previos.	-Examen de diagnóstico p	or medio de un	actividades de apren-	dizaje. Prácticas de
relevadores y electromecánicos.	electrom	necánicos			cuestionario escrito o por	medio de	laboratorio y simulaci	ón por computadora.
1.1.2 Funcionamiento y simbología de	de contr	ol en sistemas de potencia para su	Estrategia Co-ins	truccionales.	plataforma digital.			
contactores eléctricos.	integrac	ión en equipos, maquinaria y	- Exposición por l	parte del profesor.				
1.1.3 Características técnicas de	sistemas	s industriales.	-Videos didáctico	S.	Evaluación formativa.			
relevadores y contactores comerciales.			-Elaboración de r	napas mentales y/o	- Mapas mentales y/o con	ceptual		
1.1.4 Criterios de diseño con circuitos	Saber ha	acer:	conceptuales.		- Prácticas de laboratorio	y simulación por		
basados en relevadores y contactores.	- Aplicar	métodos de análisis físico-			computadora.			
1.2 Interfaces electromecánicas de	matemá	tico de los elementos	Estrategia Post-ir	nstruccionales.				
potencia.	electrom	necánicos de control en sistemas	- Simulación por	computadora.	Evaluación sumativa.			
1.2.1 Control electromecánico de potencia	de poter	ncia para su integración en			- Examen escrito y/o práct	ico		
en C.C. con relevadores.	equipos	maquinaria y sistemas						
1.2.2 Control electromecánico de potencia	industria	lles.			Se contempla la primera u	ınidad para la		
en C.A. con relevadores.					evaluación del primer paro	cial.		
1.3 Elementos de protección para cargas a	Ser:							
C.C. y C.A.	Trabajo	colaborativo.						
1.3.1 Breakers de sobrecarga.								
1.3.2 Arrancadores termomagnéticos.								
Bibliografía								

Continuación: Tabla 4.1. Desglose específico de la unidad "Control electromecánico en sistemas industriales."

Bibliografía

- Dorantes, D.J. (2004). Automatización y control de prácticas de laboratorio. México: Mc Graw Hill.
- Sánchez, J. A. (2013). Instrumentación y control básico de procesos. México: Ediciones Díaz de Santos.

Sección IV. Desglose específico por cada unidad formativa

Tabla 4.2. Desglose específico de la unidad "Semiconductores para control de potencia en la electrónica industrial."

Número y nombre de la	unidad: 2. Semiconductores para cont	rol de potencia en la electrónica industi	rial.			
Tiempo y porcentaje para esta	unidad: Teoría: 15	horas Práctica:	15 horas	Porcentaje o	del programa:	33.33%
Aprendizajes esp	erados: Aplicar sistemas de potencia o	con semiconductores en equipos, maqu	inaria y sistemas industrial	es para controlar	el suministro de e	nergía.
Temas y subtemas (secuencia)	Criterios de desempeño	Estrategias didácticas	Estrategias de eva		_	ndor de la unidad ndizaje de la unidad)
2.1 Introducción a los semiconductores.	Saber:	Estrategia Co-instruccionales.	Evaluación formativa.	F	Portafolio de evidenci	as de tareas y
2.2 Principio de funcionamiento del diodo.	- Identificar los elementos de los circuitos	- Exposición del profesor.	- Mapas mentales y/o conc	eptual	actividades de aprend	lizaje. Prácticas de
2.3.1 Tipos de diodos.	en electrónica industrial para su	- Videos didácticos.	- Prácticas de laboratorio y	simulación por	aboratorio y simulacio	ón por computadora.
2.3.1.1 Diodo de silicio.	integración en equipos, maquinaria y	- Elaboración de mapas mentales y/o	computadora.			
2.3.1.2 Diodo schottky.	sistemas industriales.	conceptuales.				
2.3.1.3 Diodo Led.			Evaluación sumativa.			
2.3.1.4 Fotodiodo.		Estrategia Post-instruccionales.	- Examen escrito y/o práctio	co.		
2.3.1.5 Diodo zener.	Saber hacer:	- Simulación por computadora.				
2.4 Principio de funcionamiento del del	- Aplicar métodos de análisis físico-		Se contempla la segunda u	ınidad para la		
transistor BJT.	matemático de los circuitos en electrónica		evaluación del segundo pa	rcial.		
2.4.1 Logica TTL.	industrial para su integración en equipos,					
2.5 Principio de funcionamiento del del	maquinaria y sistemas industriales.					
transistor FET.						
2.5.1 Logica CMOS.	Ser:					
2.6 Principio de funcionamiento de los	Trabajo colaborativo.					
tiristores.						
2.6.1 SCR.						
2.6.2 TRIAC.						
2.6.3 DIAC.						

The second secon	2
	S. Marie

Continuación: Tabla 4.2. Desglose específico de la unidad "Semiconductores para control de potencia en la electrónica industrial."						
Temas y subtemas (secuencia)	Criterios de desempeño	Criterios de desempeño Estrategias didácticas Estrategias de evaluación Producto Integrador de la unidad				
2.6.4 IGBT.						
2.7 Control electrónico de potencia con						
SCR a cargas de C.C. y C.A.						
2.8 Control electrónico de potencia en						
TRIAC a cargas de C.C. y C.A.						

Bibliografía

- Boylestad, R. (2009). Electrónica: teoría de circuitos y dispositivos electrónicos. México: Prentice Hall.
- Maloney, T. J. (2007). Electrónica industrial moderna. México: Pearson Educación.
- Harper, G. (2002). Control de motores eléctricos. México: Limusa.
- Harper, G. (2000). ABC de Instalaciones Eléctricas Industriales. México: Limusa.
- Malik, N. (1998). Circuitos electrónicos análisis, simulación y diseño. México: Prentice Hall.

Sección IV. Desglose específico por cada unidad formativa

Tabla 4.3. Desglose específico de la unidad " Sistemas optoelectrónicos y conversores de energía en la electrónica industrial."

Número y nombre de la	unidad: 3. Sistemas optoelectrónicos	y conversores de energía en la electrór	ica industrial.	
Tiempo y porcentaje para esta	unidad: Teoría: 15	E: Teoría: 15 horas Práctica: 15 horas Porcentaje del programa:		aje del programa: 33.33%
		en electrónica industrial con dispositivos	optoelectrónicos y conversores de ener	gía para su integración en equipos,
Aprendizajes esp	erados: maquinaria y sistemas indus	triales.		
Temas y subtemas (secuencia)	Criterios de desempeño	Estrategias didácticas	Estrategias de evaluación	Producto Integrador de la unidad (Evidencia de aprendizaje de la unidad)
3.1. Antecedentes y conceptos de los	Saber:	Estrategia Co-instruccionales.	Evaluación formativa.	Portafolio de evidencias de tareas y
optoacopladores.	- Identificar los elementos de los	- Videos didácticos.	-Mapas mentales y/o conceptuales.	actividades de aprendizaje. Prácticas de
3.1.1 Características técnicas de los	optoacopladores y conversores de energía	- Elaboración de mapas mentales y/o	-Prácticas de laboratorio y de simulación	laboratorio y simulación por computadora.
optoacopladores de aislamiento.	para su integración en equipos, maquinari	a conceptuales.	por computadora.	Proyecto Integrador.
3.2. Circuitos prácticos con	y sistemas industriales.	- Exposición del profesor.	-Avance de Proyecto integrador:	
optoacopladores.	y disternas maastraies.		Presentación de un circuito de control de	
3.3 Control de potencia con elementos	Saber hacer:	Estrategia Post-instruccionales.	aplicación industrial.	
optoelectrónicos.	- Diseñar circuitos con optoacopladores y	- Simulación por computadora.	apicación industrial.	
3.4. Convertidores (conversores) de	conversores de energía para su integració	n	Evaluación sumativa.	
energía.			-Examen escrito y/o práctico.	
3.4.1 Convertidor CA-CD.	en equipos, maquinaria y sistemas		-Proyecto integrador: Presentación de un	
3.4.2 Convertidor CD-CD.	industriales.		circuito de control de aplicación industrial.	
3.4.2.1 Convertidor BUCK.			circuito de control de aplicación madsinal.	
3.4.2.2 Convertidor BOOST.	Ser:		Se contempla la tercera unidad para la	
3.4.3 Convertidor CD-CA.	Trabajo colaborativo.		evaluación del tercer parcial.	
3.4.3.1 Inversor PWM y SPWM.	Comunicación efectiva.		ovaluation as to our partial.	
3.5 Electrónica de potencia aplicado a	Autonomía en el aprendizaje.			
control a máquinas eléctricas rotativas.				

Continuación: Tabla 4.3. Desglose específico de la unidad " Sistemas optoelectrónicos y conversores de energía en la electrónica industrial."

Bibliografía

- Villoría, J. (2006). Arranque y protección de motores trifásicos. México: Paraninfo.
- Benavent J. (2003). Electrónica de potencia teoría y aplicaciones. México: Alfaomega.
- Hart, D. (2001). Electrónica de potencia. México: Prentice Hall.
- Radhid, M. (1999). Electrónica de potencia circuitos, dispositivos y aplicaciones. México: Prentice Hall.
- Desmarais, L. (1998). Applied Electro-Optics. USA: Prentice Hall.
- Singh, J. (1996). Optoelectronics: an introduction to materials and devices. USA: McGRaw-Hill.
- Watson, J. (1993). Optoelectrónica. México: Limusa.

V. Perfil docente

Tabla 5. Descripción del perfil docente

Perfil deseable docente para impartir la asignatura
Carrera(s): Ingeniería Industrial o carrera de ingeniería a fin.
Ingeniería en control y automatización.
Ingeniería en electrónica y automatización.
Ingeniería en automatización.
Ingeniería en electricidad y automatización.
Ingeniería en electrónica industrial y automatización.
Ingeniería en sistemas y automatización.
o carrera afín
- Con experiencia en áreas industriales y de servicio relacionados con la temática de la asignatura.
- Experiencia mínima de dos años
- Licenciatura. Deseable Maestría.